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ABSTRACT

In this paper, we introduce the concept of direct statistical simulation for astrophysical flows. This technique may
be appropriate for problems in astrophysical fluids where the instantaneous dynamics of the flows are of secondary
importance to their statistical properties. We give examples of such problems including mixing and transport in
planets, stars, and disks. The method is described for a general set of evolution equations, before we consider the
specific case of a spectral method optimized for problems on a spherical surface. The method is illustrated for the
simplest non-trivial example of hydrodynamics and magnetohydrodynamics on a rotating spherical surface. We then
discuss possible extensions of the method both in terms of computational methods and the range of astrophysical
problems that are of interest.
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1. INTRODUCTION

The modeling of astrophysical phenomena is often limited
by the huge range of spatial and temporal scales that need to
be resolved in order to describe accurately the dynamics. In
many cases the large-scale behavior of cosmic bodies depends
on interactions at smaller scales that need to be represented
properly for a complete understanding of the astrophysical
phenomenon in question. The situation is usually complicated
by the requirement of including the back reaction of the large-
scale environment on the smaller scale dynamics in a self-
consistent manner. These types of problems are ubiquitous in
astrophysics, but we list here some important examples. The
transport of angular momentum in accretion disks may be
mediated by the (magneto)rotational turbulence that is present
in the disk (see, e.g., Balbus & Hawley 1998). This turbulence
is itself driven and modulated by the large-scale environment
of Keplerian rotation and large-scale magnetic fields (see,
e.g., Jamroz et al. 2008). The differential rotation pattern
in stars (including the sun) arises through an interaction of
buoyancy-driven turbulence and rotation, with Reynolds stresses
at intermediate scales leading to correlations that drive large-
scale flows that themselves act back on the turbulence (Ruediger
1989; Brun & Toomre 2002; Rempel 2005; Miesch 2005). This
situation is mirrored in planets, where convective processes may
create stresses leading to large-scale flows. Such stresses create
turbulence in stably stratified outer weather layers (for example,
in Jupiter and Saturn) that may drive the formation of jets (see,
e.g., Scott & Polvani 2008 and the references therein).

There are a number of approaches to modeling the fluid
interactions in astrophysical objects. The approach taken of-
ten depends on whether it is the dynamics or statistics of the
system that is of interest. Sometimes information about the
dynamics—that is, the precise evolution of a particular real-
ization of a system—is required for prediction or to compare
with observations. It is more likely that the statistics—i.e., the
average properties of an ensemble of evolutions—is of interest;
this may give more insight into the underlying physics of the
system.

Theoretically and computationally, a natural first approach
is to perform direct numerical simulations (DNSs) of the fluid

(or MHD) equations for the system. This approach is the most
straightforward and has led to breakthroughs in many branches
of astrophysical fluid dynamics. This approach lends itself nat-
urally to determining the dynamics of a given system. However,
the extreme nature of the astrophysical turbulent environment
ensures that not all spatial scales may be faithfully represented
even on the most massive parallel computers available today.
For this reason the practitioners of DNS must accept that they
are not in the correct parameter regime or may claim that the
parameters take into account the effects of scales below the
grid cutoff via eddy diffusivities (sometimes termed turbulent
transport coefficients). These diffusivities are usually chosen in
a plausible but ad hoc manner. Moreover, DNS may not be an
efficient algorithm for determining statistics, since the ensemble
over a large number of expensive calculations may be required
in order to achieve meaningful statistics.

An alternative approach, which is not useful for determining
dynamics but may be useful for statistics, is to derive evolution
equations for the large-scale dynamics and to formulate closure
models for net effects of the dynamics at moderate and small
scales. Such models have a long history in astrophysics and have
also achieved some measure of success (see, e.g., Kitchatinov
& Ruediger 1995; Ogilvie 2003; Rempel 2005). This approach
often utilizes (either implicitly or explicitly) moment hierarchies
(see, e.g., Canuto et al. 1994, 2001; Farrell & Ioannou 2008;
Garaud et al 2010). In particular, it is customary to relate the
average of local interactions of the small scale to the local
values of the large-scale fields. The weakness of such models
is that they usually rely on some ad hoc assumption to close
the model—parameterizing the interactions between large and
small scales—and often make the assumption of homogeneity
or isotropy. They sometimes find it difficult to include self-
consistently the effects of the dynamic large-scale environment.
Often it is the case in astrophysics that regions of strong transport
lie in close proximity to regions of weak or no transport or
mixing—for a good example see the jets in Jupiter—and so
closures that rely on homogeneity may lead to misleading
large-scale dynamics. Moreover, it is often the case that the
inclusion of such closure models introduces new adjustable
parameters to the problem that can be tuned to fit observations
and that little is known about the sensitivity of the large-scale
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dynamics to changes in the parameterizations of the scales not
captured.

In this paper, we present a new approach to the problem of de-
scribing astrophysical flows with a range of spatial scales, which
we believe will prove useful for a certain class of problems with
large-scale inhomogeneous and anisotropic flows. Specifically
we describe the development of efficient numerical algorithms
to solve truncated hierarchies of cumulant equations, leading
directly to the statistical description of astrophysical flows, and
we show that this direct statistical simulation (DSS) is able
to reproduce qualitatively statistics obtained by time averaging
DNS.3 That DSS has several advantages over DNS has long
been recognized, going back at least as far as a seminal mono-
graph by Lorenz (1967, p. 8). Low-order statistics are smoother
in space and stiffer in time than the underlying detailed flows.
Statistically stationary fixed points or slowly varying statistics
can therefore be described with fewer degrees of freedom and
also can be accessed more rapidly. Convergence with increasing
resolution can be demonstrated, obviating the need for separate
closure models of the subgrid physics, although these may be
included in a natural statistical framework. Finally and most
importantly, DSS leads more directly to insights, by integrating
out fast modes, leaving only the slow modes that contain the
physical information of most interest (Lorenz 1967; Marston
2010).

In this paper we develop the techniques illustrated recently
in Marston et al. (2008), where the prototypical problem of
barotropic flow relaxing toward a point jet was considered
and the statistics obtained by DNS were found to be in good
qualitative agreement with those found from a second-order
cumulant expansion. We begin by examining the general case
of constructing a cumulant hierarchy for the evolution of a
number of dynamic variables. We describe the derivation and
solution of the cumulant equations for the general case, before
focusing the discussion on the case of spherical symmetry, where
computational efficiencies are available.

Having described the method in general, we illustrate the
advantages of the method for a simple model of the interaction
of turbulence and mean flows that may be relevant to the
generation of zonal flows in stable layers in planets and stars.
The model describes the two-dimensional evolution of flows
and magnetic fields on a spherical surface. Such an evolution
is non-trivial as it is known that for the hydrodynamic problem
the Reynolds stresses act to drive inhomogeneous zonal flows;
this type of behavior is difficult to parameterize in sub-grid scale
closures. These models and their generalizations have been used
to describe the dynamics of the outer layers of giant planets such
as Jupiter (see, e.g., Scott & Polvani 2008 and the references
therein) though competing theories for the generation of zonal
flows via deep-seated convection (see, e.g., Jones & Kuzanyan
2009 and the references therein) are also available. Furthermore,
there has been much interest in the MHD version of this problem
owing to its importance in the dynamics of the solar tachocline
(see, e.g., Tobias et al. 2007; Hughes et al. 2007) and potentially
in the outer layers of extra-solar planets (Staehling & Cho 2006).
Both of these environments are believed to be turbulent, stably
stratified, and magnetized.

The tachocline is believed to play a crucial role in the gener-
ation of the 11 yr solar cycle (see, e.g., Tobias & Weiss 2007)
and angular momentum transport through the tachocline may

3 We note here that we choose the terminology direct statistical simulation as
we are solving for the statistics directly.

be responsible for spinning down the solar interior. One cru-
cial issue to be resolved is therefore the role of turbulence in
transporting angular momentum in the tachocline, and this has
been addressed both in the hydrodynamic and magnetohydrody-
namic (MHD) settings (see, e.g., Spiegel & Zahn 1992; Gough
& McIntyre 1998; McIntyre 2003; Tobias et al. 2007). What
has been shown is that whereas anisotropic hydrodynamic two-
dimensional turbulence leads to the efficient formation of zonal
flows via Reynolds stresses, the addition of a magnetic field
leads to Maxwell stresses that can oppose the formation of jets.
The suppression of jets is a function of the strength of the large-
scale magnetic field and the local magnetic Reynolds number
Rm.

The paper is organized in the following manner: in the next
section we introduce the general method and the computational
savings that can be achieved for the case of spherical symmetry
in two dimensions. In Section 3, the particular model of MHD
turbulence on a rotating spherical surface is introduced and
a comparison of the large-scale dynamics of DNS and DSS is
made.4 We conclude by discussing extensions to the method and
speculating on the range of problems where such a technique
may be of use.

2. FORMULATION OF THE MODEL

In this section we describe the derivation of a general fully
spectral algorithm for the DSS of astrophysical flows.5 We
develop the method for the typical case of equations with
quadratic nonlinearities, before specializing to systems with
spherical symmetry in two dimensions.

Consider a system that is represented by partial differential
evolution equations (PDEs) for a number r of scalar fields.
Typically, such a system may be solved directly by discretizing
the PDEs using a finite-difference, finite-volume, or finite-
element method or by deriving equations for the amplitude of
modes in a spectral expansion. Formally, this transforms the
PDEs into a finite set of ordinary differential equations that may
be integrated forward in time. If the discretization is performed
at s discrete points (or for s spectral modes), then the evolution
equations can take the form

q̇i = Ai + Bijqj + Cijkqjqk + fi(t)

〈fi(t)〉 = 0

〈fi(t)fj (t ′)〉 = Γij δ(t − t ′) (1)

where 1 � i, j, k � rs and Ai, Bij, and Cijk are the coefficients.
Here, the qi are the discretized values of the dependent variables
(or the amplitudes of the relevant spectral modes); typically,
these represent a vector of the values of the fluid properties. We
also note here that there is an implicit sum over repeated indices.

Hereinafter, to fix ideas, we shall think of the qi as represent-
ing the amplitudes of the spectral modes of a vector of dependent
variables—and shall give a concrete example in the next sec-
tion. The forcing fi(t) can then be interpreted as the statistical
forcing of the relevant spectral mode.

2.1. The General Case

2.1.1. Reynolds Decompositions, Cumulants, and Moments

One way to formulate the cumulant expansion is by carrying
out a Reynolds decomposition of the dynamical variable qi into

4 A more in-depth discussion of the dynamics, including the calculation of
turbulent transport coefficients, is included in a forthcoming paper.
5 In a future paper, we shall describe the adaptation of pseudospectral
methods for DSS
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the sum of a mean value and a fluctuation (or eddy):

qi = 〈qi〉 + q ′
i with 〈q ′

i〉 = 0 (2)

where we defer, for now, choosing the type of averaging denoted
by the angular brackets 〈〉. Typical choices are temporal or zonal
averages,6 or averages over an ensemble of initial conditions or
an ensemble of realizations.

Once the Reynolds decomposition has been implemented,
progress is made by defining the first three equal-time cumulants
ci, cij, and cijk of the combined scalar fields (qi) as7

ci ≡ 〈qi〉 = mi,

cij ≡ 〈q ′
iq

′
j 〉,

= 〈qiqj 〉 − 〈qi〉〈qj 〉 = mij − mimj ,

cijk ≡ 〈q ′
iq

′
j q

′
k〉,

= 〈qiqjqk〉 − (〈qi〉〈qjqk〉 + perms) + 2〈qi〉〈qj 〉〈qk〉,
= mijk − mimjk − mjmik − mkmij + 2mimjmk, (3)

where mi, mij, and mijk are, respectively, the traditional defini-
tions of the first, second, and third moments. We stress here
that the second and higher cumulants contain information about
correlations that are non-local in space and therefore include
interactions that are not included in the simple local moment
hierarchies discussed in the introduction. For this reason this
approach is more tailored to inhomogeneous problems.

2.1.2. Derivation of the Cumulant Hierarchy: The
Hopf Functional Approach

The hierarchy of equations of motion (EOMs) for the evolu-
tion of the cumulants can be obtained directly be differentiating
Equations (3) with respect to time and using Equations (1), to-
gether with repeated back substitution. A more elegant method
is to introduce variables pi that are, in analogy to quantum me-
chanics, conjugate to the qi in the sense that qi = −i∂/∂pi as in
Equation (7) below (Ma & Marston 2005). Then one may define
the Hopf generating functional (Frisch 1995):

Ψ[q(t), p] ≡ eipiqi (t), (4)

recalling the summation over repeated indices. The Hopf func-
tional obeys a Schrödinger-like equation:

i
∂

∂t
Ψ = ĤΨ, (5)

with linear operator Ĥ given by

Ĥ ≡ pi

(
−Ai + iBij

∂

∂pj

+ Cijk

∂2

∂pj∂pk

)
, (6)

as can be verified by combining Equations (4)–(6) to reproduce
Equation (1) in the absence of any stochastic forcing.

As Equation (5) is linear in Ψ, the average Ψ ≡ 〈Ψ[q(t), p]〉
obeys the same equation; however, Ψ encapsulates information
about the equal-time moments, as can be seen by repeated

6 Although the qi are functions of time only, a zonal average may be taken by
keeping only those modes that correspond to axisymmetric modes (for an
expansion in spherical basis functions this is equivalent to keeping the m = 0
modes).
7 These definitions are sufficient for cumulant hierarchies truncated at either
second or third order; for higher order hierarchies corresponding definitions of
the higher order cumulants are required.

differentiation of Equation (4) with respect to pi, followed by
averaging:

〈qi1qi2 · · · qin〉 = (−i)n
∂nΨ

∂pi1∂pi2 · · · ∂pin

∣∣∣∣
pi=0

. (7)

(For the case of time averaging, the statistics do not vary in time,
∂
∂t

Ψ = 0, and the statistics are obtained from the solution of the

time-independent equation ĤΨ = 0.) The Hopf functional Ψ
may also be expressed as the exponential of a power series in
pi, the coefficients being the cumulants:

Ψ = exp

{
ici(t)pi − 1

2!
cij (t)pipj − i

3!
cijk(t)pipjpk + · · ·

}
(8)

as can be checked by use of Equation (7) to reproduce the
moments in terms of the cumulants, Equations (3). Stochastic
forcing can now be included with the addition of the Γij term:

Ĥ ≡ pi

(
−Ai + iBij

∂

∂pj

+ Cijk

∂2

∂pj∂pk

+ iΓijpj

)
. (9)

Upon substituting Equation (8) into Equation (5) and collecting
powers of pi, one obtains the EOMs for the cumulants that
truncated at third order read

ċi = Ai + Bij cj + Cijk(cj ck + cjk)

ċij = {2Bikckj + Cik�(4c�cjk + 2cjk�)} + Γij

ċijk = {3Bi�c�jk + 6Ck�m(cijmc� + cimcj�)} − μcijk + O(cijk�),

(10)

where we defer discussion of the parameter μ until later. Here,
for compactness, we have introduced the short-hand notation {}
to denote symmetrization over indices

{2Bikckj } ≡ Bikckj + Bjkcki (11)

that maintains symmetries ċij = ċj i and similarly for the third
cumulant.

Truncated at second order (CE2), the cumulant expansion
is realizable (Salmon 1998, p. 378)8 and well behaved in
the sense that the energy density is positive and the second
cumulant obeys positivity constraints. Going to third order
(CE3) and beyond introduces difficulties. A phenomenological
eddy-damping parameter (Orszag 1977; Andre 1974) μ that
models the neglect of the fourth and higher cumulants from
the hierarchy is included in the last of Equation (10) and is
required to prevent blow-up. This ad hoc procedure is somewhat
unsatisfactory and more robust methods may be necessary.
Indeed, determining reliable methods of truncating the hierarchy
is a matter of current research.

2.2. Symmetry and the Derivation of Reduced Cumulant
Equations

In principle, the general set of cumulant equations in
Equation (10) can be solved with enough computational effort.
However, efficient algorithms can be developed if the under-
lying system exhibits further symmetries. This is typically the
case for astrophysical systems, which usually exhibit spherical
or cylindrical symmetry or a corresponding translational sym-
metry in a local Cartesian domain. We discuss in detail here the
case of cumulants in a sphere.

8 CE2 can be viewed as the exact solution of a stochastically driven linear
model.
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2.2.1. Equations for Fully Spectral DNS on a Sphere

For systems with an underlying spherical symmetry, the
spectral expansion of the dependent variables discussed in
Section 2 often takes the form

q =
L;M∑
�;m

q�m(r)Ym
� (θ, φ),

=
L;M∑
�;m

q�m(r)(−1)m
√

2� + 1

4π

(� − |m|)!
(� + |m|)! P m

� (cos θ )eimφ,

(12)

where r is the spherical radius, θ is the co-latitude, and φ
is the longitude. Here the q�m(r) are complex functions and
the P m

� are associated Legendre functions. Furthermore on a
spherical surface, the r-dependence is absent and a fully spectral
representation of the EOM (Equation (1)) can be written as

q̇�m = A�δm,0 +
∑
�1

B�;�1mq�1m + f�m(t)

+
m=m1+m2∑
�1,�2,m1,m2

C
(+)
�;�1m1;�2m2

q�1m1q�2m2

+
m=m1−m2∑
�1,�2,m1,m2

C
(−)
�;�1m1;�2m2

q�1m1q
∗
�2m2

. (13)

The sum that appears in the second line of Equation (13) is
restricted to zonal wavenumbers m1 greater than or equal to m2
without loss of generality. We note here that, because the scalar
fields are real-valued in coordinate space, we may focus on the
evolution of modes with m � 0 as modes with m < 0 may be
obtained by complex conjugation. Moreover, for simplicity in
the above and in subsequent equations the index that encodes
which state variable is being solved for has been subsumed into
the � label.

The quadratic nonlinearities have their origin in the Jacobians
of Equations (16) with coefficients C(+) representing amplitudes
for the scattering of two waves with m � 0; C(−) are for waves
with m > 0 and m < 0 to scatter. The amplitudes of these
coefficients are constructed from the matrix elements of the
Jacobian:

I
(±)
�;�1m1;�2m2

≡ im1

∫
dθP m

� (cos θ )P m1
�1

(cos θ )
∂

∂θ
P

m2
�2

(cos θ ),

(14)

where m = m1 ± m2. Integrals I (±) are evaluated in a numeri-
cally exact manner by Gaussian quadrature.

2.2.2. Equations for Fully Spectral DSS on a Sphere

Similar considerations lead to an efficient representation of
the cumulant hierarchy for a spherical shell. These considera-
tions can then be combined with the knowledge of the underlying
symmetries of the statistics themselves to derive reduced hier-
archies of cumulant equations. These symmetries are preserved
whether zonal, temporal, or ensemble averages are used. Statis-
tics on the rotating sphere exhibit azimuthal symmetry. The sim-
plest conceptual choice for the averaging operation 〈〉 is there-
fore the zonal average and we choose that here, and then follow
that with a running time average. On symmetry grounds, the first

cumulant must be independent of longitude φ and therefore in
the spherical harmonic basis only the m = 0 mode c� = 〈q�,m=0〉
is non-zero. Similar symmetry arguments yield the result that
the second cumulant depends on the latitudes of the two field
points, but only on the difference between their longitudes. It
can therefore be written as c�1�2m = 〈q�1mq�2−m〉 − c�1c�2δm0.
Furthermore, zonal averaging then requires that c�1�2m=0 = 0.
Similarly the third cumulant is a function of only five, not six,
wavenumbers, i.e., it can be written as c�;�1m1;�2m2 . Moreover,
because the scalar fields are real valued in coordinate space, we
have c�1�2m = c∗

�2�1m
. For models with an imposed north–south

reflection symmetry about the equator9, the cumulants respect
further constraints: c� vanishes for all even � and c�1�2m = 0 if
�1 is odd and �2 is even, and vice versa. All of these symmetries
therefore lead to a computational saving.

We consider here the simplest non-trivial case where the
hierarchy is truncated at second order (CE2), i.e., all higher
cumulants are set to zero. The EOM for the cumulants in the
basis of spherical harmonics are then

ċ� = A� + B�;�10c�1 + C
(−)
�;�1m;�2m

c�1�2m,

ċ�1�2m = 2Γ�1mδ�1�2 + B�1;�mc��2m + B�2;�mc�1�m

+ C
(+)
�1;�0;�′mc�c�′�2m + C

(+)
�2;�0;�′mc�c�1�′m, (15)

where again the convention of summation over repeated indices
has been adopted. (There would also be a contribution to
the first cumulant from C

(+)
�1;�0;�′0c�c�′ but it vanishes for the

problems considered here as the Jacobian of two fields with
no longitudinal dependence is zero.) These equations may
be compared to a coordinate-independent version given by
Equations (21) and (22) in Marston et al. (2008). That only
the eddy-mean flow interaction is retained in CE2 may be seen
by noting that the coupling of the first cumulant with the second
involves no mixing of the azimuthal wavenumber m (only a
single m appears in Equations (15)). Eddy–eddy scattering
occurs only at third and higher orders10.

3. TURBULENT DRIVEN MHD ON A SPHERICAL
SURFACE: THE MODEL

We consider a simple two-dimensional model of a stably
stratified region of hydrodynamic or MHD turbulence. This is
the simplest extension of the local β-plane model considered
by Tobias et al. (2007). We stress again that, although this
system is of interest in its own right and the interaction of
Reynolds and Maxwell stresses plays an important role in the
dynamics of the tachocline and other regimes of stably stratified
MHD turbulence, in this paper we are utilizing this model as
a non-trivial example of the utility of DSS. We therefore defer
discussion of the interaction of the stresses for a subsequent
paper.

The behavior of such a system in two dimensions can be
described by the evolution of two scalar fields, namely the
relative vorticity ζ (θ, φ, t) (with θ being the co-latitude and φ
the longitude, as before) and the scalar potential for the magnetic
field A(θ, φ, t) (cf. Tobias et al. 2007). When extended to the
sphere rotating at the angular rate Ω, these may be written as

q̇ = J [q,ψ] + J [A,∇2A′] − κζ − ν2∇4ζ + f (t),

Ȧ = J [A,ψ] + η∇2A′, (16)

9 This is not necessary but is computationally expedient.
10 We shall investigate including higher orders in the hierarchy for the
cumulant expansion in subsequent papers.
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where on the unit sphere the Jacobian is given by

J [q,ψ] ≡ 1

sin θ

(
∂q

∂φ

∂ψ

∂θ
− ∂q

∂θ

∂ψ

∂φ

)
. (17)

Here,

ζ = ∇2ψ,

q = ζ + 2Ω cos θ,

A = A′ + B0 cos θ. (18)

Hence q is the absolute vorticity. Here, κ is a frictional term,
ν2 is a hyperviscosity whilst f (t) is the stochastic forcing.
Magnetic diffusion is explicitly included through a magnetic
diffusivity η, since we believe that it is important to capture
this process correctly. We note here that the parameter B0
measures the strength of a toroidal imposed magnetic field,
which is held fixed in time and note that such a field cannot
be self-consistently maintained in a strictly two-dimensional
calculation. The equations have been scaled so that the magnetic
field is measured in units of the Alfvén velocity. For purely
hydrodynamic simulations, we simply set B0 = A = 0.

These equations may then be written in the form of Equa-
tion (1) (with r = 2) by setting the absolute vorticity and mag-
netic potential scalar fields into two layers labeled by qα with
q1 = q and q2 = A and discretizing the system either to obtain
equations for the spectral amplitudes of the form Equation (13)
or more conveniently for computation a finite-difference repre-
sentation on a spherical geodesic grid. In a similar manner the
spectral representation of the cumulant equations (i.e., Equa-
tions (15)) can simply be derived once the coefficients in Equa-
tion (13) have been calculated for this model.

4. COMPARISON OF DNS AND DSS

4.1. Numerical Implementation of DNS and DSS

4.1.1. DNS

Direct numerical simulation of the two-dimensional system
has been implemented using two different techniques. The EOM
given by Equation (13) may be integrated forward in time in
their pure spectral form using a standard fourth-order accurate
Runge–Kutta algorithm with an adaptive time step, though in
practice it is much faster to work directly in real space on a
spherical geodesic grid as we do here. The fully spectral code is
therefore only used as a validation of the geodesic code below
and a useful comparison with the fully spectral DSS.

The most efficient numerical integration of the DNS EOM is
carried out in real space on a spherical geodesic grid (Heikes
& Randall 1995) of D cells with the use of the second-order
accurate leapfrog algorithm and a Robert filter. A multigrid
algorithm solves Poisson’s equation at each time step.

4.1.2. DSS

We take advantage of the stiff nature of the spectral EOM for
the cumulants (Equations (15)). These are integrated forward
in time using a semi-implicit backward Euler Full Orthogonal
Method (Saad 2003) that is based upon Krylov subspaces and
that permits a much longer time step than is possible for explicit
integration methods.

We note here that integration of the EOM for CE2,
Equations (15), requires of order L3M operations at each time
step, where 0 � � � L and 0 � m � min(�,M) define the

spectral cutoffs. A pseudospectral implementation of the EOM
would require the same order of operations on the sphere and
thus offers no advantages over the pure spectral method used
here. We find that all c�1�2m with m greater than the maximum
azimuthal wavevector of the stochastic forcing vanish; hence,
the spectral expansion can be severely truncated by restricting
M 	 L without loss of accuracy. This results in substantial
speed up and a reduction in the required memory. Moreover,
only a subset of the possible coefficients of the quadratic non-
linearities, C(−)

�;�1m;�2m
and C

(+)
�1;�0;�′m, with four indices appears in

Equation (15) resulting in reduced memory usage.
Finally, we note that the code implementing both DNS and

DSS (via CE2) is written in the Objective-C++ programming
language and runs on Apple computers (OS X 10.6) utilizing
C-blocks and grand central dispatch (gcd) for efficient symmet-
ric multiprocessing parallelism. We stress that the DSS can run
an order of magnitude or more faster than DNS.

4.2. Conservation Laws, Model Parameters,
and Initial Conditions

In the absence of damping and driving forces, the EOMs for
the cumulants, like the EOMs for the vorticity and magnetic po-
tential, have a number of conservation laws. For example, in the
hydrodynamic case, kinetic energy, enstrophy, and angular mo-
mentum are conserved, whilst for the MHD case the conserved
quantities are angular momentum, total energy, cross-helicity,
and the mean squared potential. Moreover, for stochastic forcing
restricted to wavevectors |�| > 0, the case considered here, the
angular momentum in the CE2 remains exactly zero, in contrast
to DNS.

Just as for direct numerical simulations utilizing spherical
harmonics, there are convenient expressions of the average
values of various quantities in terms of the low-order cumulants.
For example, the mean cross-helicity is given by

1

4π

∫
d2Ω〈
v · 
B〉 = − 1

4π

∫
d2Ω〈qA〉

= − 1

2π

∑
�m

(c1�2�m + c1�c2�δm0) (19)

where the two layers are labeled explicitly in the final line.
Similar expressions are available for the averages of other
quadratic quantities.

The models are formulated on the unit sphere with a timescale
such that the sphere completes a full rotation in one day of
model time. All model parameters may be defined in terms of
these length and timescales; for instance, Ω = 2π . Friction
removes energy at long length scales and is parameterized by
rate κ . The hyperviscosity ν2 that appears in Equation (16) is
included solely to absorb enstrophy at the smallest resolved
scales. Consequently, it is rescaled with the grid size or spectral
cutoff so that

ν2 → ν2 ∗ (D/4)−2 geodesic,

ν2 → ν2 ∗ (L(L + 1))−2 spectral, (20)

where the maximum eigenvalue of −∇2 on a geodesic grid
with D cells is approximately D/2. Thus for ν2 = 1 (the case
we consider here), features on the smallest length scales are
dissipated on a timescale of order one day.

Stochastic forcing is confined to the wavevectors Lmin � � �
Lmax and Mmin < |m| � Lmax. Within this range of wavevectors,
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Figure 1. DNS calculation of the instantaneous relative vorticity (left panels) and zonal velocity fields (right). Top: a pure hydrodynamic model (B0 = 0) that develops
a westerly (prograde) jet along the equator. Bottom: the imposed toroidal magnetic field parameter B0 = 0.5. The calculation is done on a spherical geodesic grid with
D = 163, 842 cells with stochastic forcing over spherical wavevectors 8 � �, m � 12. See Section 4.2 for the values of the other parameters.

(A color version of this figure is available in the online journal.)

the forcing f�m that appears in Equation (13) is given by

f�m(t) =
√

F/Δ ∗ Gaussian(t/Δ), (21)

where Gaussian(t) is a complex number randomly drawn, for
each value of � and m, from a normal distribution of zero mean
and unit variance that smoothly transitions from one random
number to the next over a time period of Δ. We set Δ = 0.1
which is large compared with the time step, but small compared
with advective timescales. Consequently, in Equation (15) we
have

Γ�m =
{

2F for Lmin � � � Lmax and Mmin � |m| � �
0 else. (22)

In the following, we hold fixed κ = 0.02, ν2 = 1, F = 0.2,
and (for the magnetic cases) η = 10−4. We study the evolution
of the systems (DNS and DSS) for two different choices for the
range of the forcing wavevectors {Lmin,Mmin, Lmax}.

We close our description of the set-up of the models by
commenting on the choice of initial condition. The DNS
integrations are started from rest with zero perturbation to the
imposed field. For the DSS, at the start of the CE2 integration
we set the first cumulant c� = 0 and the second cumulant
c�1�2m = c2δ�1�2 which corresponds to initial short-ranged
correlations in the vorticity. At low resolutions, the fixed point
sometimes has jets that move in directions opposite to those
found in DNS; this fixed point, which is an artifact of the spectral
truncation, can be avoided by initializing c� with small values.

5. RESULTS

5.1. Small-scale Forcing: Lmin = 8, Mmin = 8, and Lmax = 12

We begin by considering the hydrodynamic and MHD evo-
lutions for the case where the system is forced solely at small
scales in the vorticity equation. The DNS of the hydrodynamic
case is performed until a statistically steady state is reached and
meaningful statistics can be calculated. For this case, this has
occurred by t ∼ 1000; after this time a running time average is
performed for another 1000 days. Here the small-scale driving
leads to the formation of flows on a range of scales including
large-scale jets as shown in Figure 1 (top panels) which show
the instantaneous relative vorticity (left) and relative zonal ve-
locity (right). These clearly show the formation of a prograde
(westerly) jet at the equator with two retrograde (easterly) jets
at high latitudes, with the total angular momentum of the fluid
remaining close to zero. As we shall see, these jets are driven
by the flows on smaller scales.

The history and statistics of these hydrodynamic jets for DNS
are displayed in the timelines in the upper panels of Figure 2. In
the left portion of each panel the relative vorticity and relative
zonal velocity (averaged over a period of 10 days) are shown as a
function of latitude and time. At 1000 days (half-way through the
evolution—signified by a vertical line in the figures) temporal
averaging is switched on and a running average from that point is
displayed in the figures. This running average eventually settles
down to show the mean position and strength of the jets.

Figure 2 compares these timelines with those calculated
by DSS for the same parameter values. The DSS achieves
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Figure 2. Timelines of the zonal mean relative vorticity (left) and zonal velocity (right) as calculated for the pure hydrodynamic problem with no imposed toroidal
field (B0 = 0). Top: DNS on a spherical geodesic grid with D = 163,842 cells. Bottom: DSS (CE2) with L = 100 (bottom). A running time average commences at
the midpoint in time (vertical line) at which point statistics are accumulated.

(A color version of this figure is available in the online journal.)

Table 1
Non-dimensional Numbers as Calculated a Posteriori

Case Method B0 Ro Rm 〈B2〉/〈U2〉
1 DNS 0 0.0351 4415 0.0

1 DSS(CE2) 0 0.0352 4431 0.0

1 DNS 0.1 0.0331 4195 0.04

1 DSS(CE2) 0.1 0.0323 4064 0.04

1 DNS 0.5 0.015 1865 1.29

1 DSS(CE2) 0.5 0.017 2144 1.02

2 DNS 0 0.0542 6812 0.0

2 DSS(CE2) 0 0.0548 6885 0.0

2 DNS 1.0 0.0237 2980 1.07

2 DSS(CE2) 1.0 0.0396 4980 1.25

Notes. Case 1 refers to stochastic forcing with Mmin = 8, whilst Case 2 refers
to Mmin = 1. (For the case of the zero magnetic field, Rm reduces to a non-
dimensional measure of the kinetic energy of the flow.)

remarkable agreement with the DNS in both the position and
strength of the jets. This is confirmed in Figure 3 which
demonstrates that the time-averaged zonal mean zonal ve-
locity as calculated by DSS agrees well with DNS except
at high latitudes. Moreover, whilst the DSS respects the
north–south symmetry as expected, for the DNS the aver-
age position of the prograde jet is slightly off-equator, re-
flecting the finite length of data over which the averages
are calculated. Figure 3 also demonstrates that good conver-
gence with increasing resolution is achieved, both for DNS and
for DSS.

That DSS and DNS agree well is reflected in the data recorded
in Table 1. There we give some non-dimensional ratios that can
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Figure 3. Comparison of the mean zonal velocity as calculated in DNS and
DSS (CE2) in the pure hydrodynamic problem with no imposed magnetic field
(B0 = 0). Convergence with increasing resolution is evident both for DNS and
for DSS (CE2). The prograde jet is reproduced well by CE2. Due to the finite
time interval of accumulating statistics (1000 days), statistics obtained from
DNS are not perfectly symmetric about the equator.

(A color version of this figure is available in the online journal.)

only be calculated once the kinetic and magnetic energy are in
a statistically steady state11. These are defined as

Ro = 〈u2 + v2〉 1
2

2ΩL
, Rm = 〈u2 + v2〉 1

2 L

η
, (23)

where we recall that Ω = 2π , L = 1, and η = 10−4. That
DSS is able to reproduce the jets using a cumulant hierarchy
truncated at second order is an interesting result. It is evidence
that the forward enstrophy cascade and anisotropic backward

11 We note that sufficient averaging must be employed in order to obtain
meaningful averages in both DSS and DNS. This is easy to achieve for DSS
but is problematic for DNS.
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Figure 4. Timelines of the zonal mean zonal velocity for an imposed toroidal magnetic field with B0 = 0.1. Top: DNS with D = 40,962 cells. Bottom: DSS (CE2)
with L = 100.

(A color version of this figure is available in the online journal.)

energy cascade (Kraichnan & Montgomery 1980; Salmon
1998, p. 378), which are frequently invoked to explain their
existence, are in fact not necessary—there can be no cascade
in the absence of eddy–eddy interactions. We note here that
the enstrophy cascade argument has also been questioned in
the context of planetary atmospheres (Vallis 1992; Schneider
& Walker 2006; O’Gorman & Schneider 2007) where shearing
and modification of the thermal structure of the atmosphere
by eddy fluxes weaken the eddy–eddy interactions. Here it is
therefore Reynolds stresses that are primarily responsible for
the build-up of the zonal flows. This result is important for
our understanding of the driving of zonal flows in planetary
atmospheres.

We now examine the effects of including a toroidal magnetic
field and examine the dynamics for two imposed field strengths,
B0. For B0 = 0.1 the onset of jet formation is delayed but in both
DNS and DSS the system eventually settles into a statistically
steady state as shown in Figure 4. For both methods, for this
relatively weak imposed mean field, there is eventually little
suppression of the jets, with slightly more suppression occurring
in the DSS. For this choice of parameters, the magnetic energy is
small compared with the kinetic energy of the flow (4% for both
DNS and DSS (CE2)), and so it is to be expected that the role
of the magnetic field will be secondary. Moreover, the magnetic
field has been expelled to high latitudes by the strong jets and
turbulence at low latitudes (see Figure 7). This flux expulsion
(Weiss 1966; Tao et al. 1998) leads to separated regions with
different dynamics; at low latitudes, where the field is weak, the

hydrodynamic evolution continues unimpeded, whilst at high
latitudes the magnetic field leads to some suppression of the
jets.

At B0 = 0.5, however, strong qualitative changes are plainly
evident as the jets are destroyed by the fluctuations in the
magnetic field, both in DNS and in DSS, in agreement with
the findings of Tobias et al. (2007). Small remnants of the jets
persist in DSS at high latitudes, where the imposed toroidal
field is weakest (see Figure 5). DNS results (top panels) show
the incoherent nature of the flows—it is this that leads to the
suppression of the jets. For this case, the magnetic energy is in
approximate equipartition with the kinetic energy, as shown in
Table 1. Once again DNS and DSS show a remarkable agreement
for this case; see Figure 6. A comparison of the mean toroidal
component of the magnetic field is shown in Figure 7. Here the
situation is reversed from the previous weaker field case. The
magnetic field here is too strong to be expelled by the eddies
and the jet never forms at low latitudes. Therefore, the field
is confined to low latitudes and the (weaker) jets can only be
found at high latitudes where the imposed field is weaker. For
this strength of imposed field, the kinetic energy is reduced (see
the values of Rm in Table 1) and the magnetic energy comes
into equipartition with the kinetic energy. Clearly, the transport
of angular momentum by the Reynolds and Maxwell stresses
and of magnetic flux by the turbulent advection have acted in a
very different manner here. The discussion of these processes
and their description via the second cumulants are postponed to
a subsequent paper.
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Figure 5. Same as Figure 2 except with B0 = 0.5.

(A color version of this figure is available in the online journal.)
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Figure 6. Comparison of the mean zonal velocity as calculated in DNS and
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(A color version of this figure is available in the online journal.)

5.2. Case Lmin = 8, Mmin = 1, and Lmax = 10

We now consider the effect of reducing the minimum stochas-
tic forcing wavevector in the azimuthal direction, Mmin, down to
wavenumber 1. This brings stochastic effects to larger scales and
so presents a more robust challenge for DSS. A comparison of
the zonal mean relative vorticity and zonal velocity as calculated
by DNS and DSS (CE2) is shown in Figure 8 for the hydrody-
namic problem. In contrast to the previous case, there are two
prograde jets at high latitudes, and one equatorial retrograde jet;
again the total angular momentum is close to zero. Now, how-
ever, the jets are seen to wander significantly in latitude in DNS
owing to the continual random forcing at large zonal scales.
Once established in DSS, however, they remain fixed in place.
As a consequence, the time-averaged zonal means are reduced
in magnitude in DNS compared with DSS, as made apparent in
the quantitative plot of Figure 9.

Imposing a relatively weak toroidal field by setting B0 = 0.1
again has little effect on the zonal mean velocity as shown in
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Figure 7. Comparison of the mean toroidal magnetic field as calculated in DNS
and DSS (CE2) for imposed toroidal fields of B0 = 0.1 and 0.5.

(A color version of this figure is available in the online journal.)

Figure 9. However, at B0 = 1 the jets are largely eliminated by
the fluctuations in the magnetic field, both in DNS and in DSS.
Somewhat larger jet remnants remain at high latitudes, where
the imposed toroidal field is weakest, and again stronger jets are
found in DSS than in DNS (see Figure 10).

The toroidal field is tightly confined to latitudes less than
roughly 60◦, as Figure 11 depicts, likely owing to flux expul-
sion of the field. Again DSS does a reasonably good job of
reproducing the mean field.

6. DISCUSSION

In this paper, we have introduced the concept of DSS for astro-
physical fluid dynamics. We have compared the results of DNS
and DSS for the problem of two-dimensional hydrodynamics
and MHD on a spherical surface. Although the set-up of the
model is relatively simple, the ensuing dynamics is not. In the
hydrodynamic case, non-trivial interactions at moderate scales
drive inhomogeneous large-scale zonal flows (jets/winds). With
a weak imposed field the jets remain largely unaffected and the
magnetic fields are expelled to higher latitudes. With a stronger
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Figure 8. Timelines of the zonal mean relative vorticity (left) and zonal velocity (right) as calculated for the pure hydrodynamic problem with no imposed toroidal
field (B0 = 0). Top: DNS on a spherical geodesic grid with D = 163,842 cells. Bottom: DSS (CE2) with L = 100 (bottom).

(A color version of this figure is available in the online journal.)
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(A color version of this figure is available in the online journal.)

imposed toroidal magnetic field these winds are suppressed ex-
cept at high latitudes where the imposed field is weak.

We find that even the simplest formalism of DSS, based upon
the truncation of the cumulant hierarchy at second order, is capa-
ble of reproducing the driving and suppression of the zonal flows
and the flux expulsion of the magnetic fields by the inhomoge-
neous jets. Because the method includes interactions that are
non-local in space it is very well suited to such inhomogeneous
problems that typically arise in astrophysics. Such a truncation
is equivalent to keeping the mean/eddy interactions in the eddy
equations and the eddy/eddy interactions in the mean equa-
tions, whilst suppressing the eddy/eddy interactions in the eddy
equations. Thus, it is the Reynolds and Maxwell stresses that,
respectively, drive and suppress the jet, not an inverse cascade
as is frequently assumed.

The DSS scheme is more numerically efficient than the
corresponding DNS. We believe that the results presented
here are an encouraging beginning for the concept of DSS
in astrophysical fluid dynamics. It is important though to
determine the range of validity of such a procedure. Clearly,

the method is designed to work best when the dynamics
leads to the generation of substantial statistical means (e.g.,
mean flows or magnetic fields) or involves the interactions
of prescribed (usually inhomogeneous) mean quantities with
smaller scale turbulence. The method is inefficient when the
turbulence is dominated completely by small scales and is
largely homogeneous—for example, homogeneous, isotropic
hydrodynamic turbulence, or the small-scale dynamo problems
(see, e.g., Tobias et al. 2011). We do believe, however, that many
cases of astrophysical interest do fall into the category where
DSS techniques may prove useful. Examples currently under
consideration include the interaction of mean magnetic fields
and shear flows either on a spherical surface (leading to joint
instability; see, e.g., Cally et al. 2003) or in a cylindrical domain
(leading to magnetorotational instability), the instability and
mixing of large-scale shear flows in the presence of a magnetic
field, and the driving of zonal flows via convection in a tilted
cylindrical annulus (see, e.g., Brummell & Hart 1993). It will
be interesting to determine how well the techniques described
in this paper fare for these problems, and we predict varying
degrees of success. We also stress that even utilizing DSS
will not allow the calculation of statistics at astrophysically
realistic values. However, it is to be hoped that, whereas the
dynamics may be extremely sensitive to the parameters, for a
range of problems the statistics may prove less so. We believe
that some of these problems may require the inclusion of higher
order cumulants in the scheme and are currently engaged in
determining efficient numerical procedures for their integration.

Clearly, in the longer term, if these techniques prove useful
for the simpler problems described above, it will be of interest
to apply them to more computationally intensive problems in
astrophysical fluids. These include the driving of zonal flows
in planets, the mixing of angular momentum and abundances
in stellar interiors, and the transport by turbulence in accretion
disks.
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Figure 10. Same as Figure 8 except for B0 = 1 and with DNS run on a lower resolution spherical geodesic grid with D = 40,962 cells.

(A color version of this figure is available in the online journal.)

Figure 11. Toroidal component of the magnetic field for B0 = 1.0. Top: instantaneous field found by DNS on a spherical geodesic grid with D = 40,962 cells. Bottom:
zonal mean field found by DSS with L = 50.

(A color version of this figure is available in the online journal.)
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